Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.530
Filter
1.
Arq Bras Oftalmol ; 87(4): e2023, 2024.
Article in English | MEDLINE | ID: mdl-38656026

ABSTRACT

PURPOSE: This study measured serum hypoxia--inducible factor-1 (HIF-1α) and survivin levels in patients with diabetes and investigated their association with the severity of retinopathy. METHODS: This study included 88 patients with type 2 diabetes mellitus who underwent routine eye examinations. Three groups were created. Group 1 consisted of patients without diabetic retinopathy. Group 2 included patients with non-proliferative diabetic retinopathy. Group 3 included patients with proliferative diabetic retinopathy. To measure serum HIF-1α and survivin levels, venous blood samples were collected from patients. RESULTS: The mean HIF-1α levels in groups 1, 2, and 3 were 17.30 ± 2.19, 17.79 ± 2.34, and 14.19 ± 2.94 pg/ml, respectively. Significant differences were detected between groups 1 and 3 (p=0.01) and between groups 2 and 3 (p=0.01). The mean survivin levels in groups 1, 2, and 3 were 42.65 ± 5.37, 54.92 ± 5.55, and 37.46 ± 8.09 pg/ml, respectively. A significant difference was only detected between groups 2 and 3 (p=0.002). CONCLUSION: The present study revealed that serum HIF-1α and survivin levels are increased in patients with non-proliferative diabetic retinopathy compared to those in patients without diabetic retinopathy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Hypoxia-Inducible Factor 1, alpha Subunit , Severity of Illness Index , Survivin , Humans , Diabetic Retinopathy/blood , Survivin/blood , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Male , Female , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Middle Aged , Aged , Inhibitor of Apoptosis Proteins/blood , Inhibitor of Apoptosis Proteins/analysis , Adult , Case-Control Studies , Biomarkers/blood , Reference Values , Statistics, Nonparametric
2.
Am J Chin Med ; 52(2): 565-581, 2024.
Article in English | MEDLINE | ID: mdl-38480502

ABSTRACT

L48H37 is a synthetic curcumin analog that has anticancer potentials. Here, we further explored the anticancer effect of L48H37 on oral cancer cells and its mechanistic acts. Cell cycle distribution was assessed using flow cytometric analysis. Apoptosis was elucidated by staining with PI/Annexin V and activation of the caspase cascade. Cellular signaling was explored using apoptotic protein profiling, Western blotting, and specific inhibitors. Our findings showed that L48H37 significantly reduced the cell viability of SCC-9 and HSC-3 cells, resulting in sub-G1 phase accumulation and increased apoptotic cells. Apoptotic protein profiling revealed that L48H37 increased cleaved caspase-3, and downregulated cellular inhibitor of apoptosis protein 1 (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP) in SCC-9 cells, and the downregulated cIAP1 and XIAP in both oral cancer cells were also demonstrated by Western blotting. Meanwhile, L48H37 triggered the activation of caspases and mitogen-activated protein kinases (MAPKs). The involvement of c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) in the L48H37-triggered apoptotic cascade in oral cancer cells was also elucidated by specific inhibitors. Collectively, these findings indicate that L48H37 has potent anticancer activity against oral cancer cells, which may be attributed to JNK/p38-mediated caspase activation and the resulting apoptosis. This suggests a potential benefit for L48H37 for the treatment of oral cancer.


Subject(s)
Curcumin , Mouth Neoplasms , Humans , Caspases/metabolism , Curcumin/pharmacology , Cell Line, Tumor , Apoptosis , p38 Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Caspase 3/metabolism , Mouth Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/pharmacology
3.
Sci Rep ; 14(1): 6373, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493257

ABSTRACT

Cancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh. Drug potency was assessed via cell viability assays across several pancreatic and ovarian cancer cell lines in comparison with the individual components (S2 and IAPinh) as well as their equimolar mixtures (S2 + IAPinh) both in vitro and in preclinical models of pancreatic and ovarian cancer. Mechanistic studies of S2/IAPinh-mediated cell death were investigated in vitro and in vivo using syngeneic and xenograft mouse models of murine pancreatic and human ovarian cancer, respectively. S2/IAPinh demonstrated markedly improved pharmacological activity in cancer cell lines and primary organoid cultures when compared to the controls. In vivo testing demonstrated a marked reduction in tumor growth rates and increased survival rates when compared to the respective control groups. The predicted mechanism of action of S2/IAPinh was confirmed through assessment of apoptosis pathways and demonstrated strong target degradation (cellular inhibitor of apoptosis proteins-1 [cIAP-1]) and activation of caspases 3 and 8. Taken together, S2/IAPinh demonstrated efficacy in models of pancreatic and ovarian cancer, two challenging malignancies in need of novel treatment concepts. Our data support an in-depth investigation into utilizing S2/IAPinh for the treatment of cancer.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Animals , Mice , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Apoptosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Caspases/metabolism , Cell Line, Tumor
4.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452945

ABSTRACT

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Benzodioxoles , Drug Resistance, Neoplasm , Indolizines , Survivin , Humans , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Survivin/genetics , Survivin/metabolism , Animals , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Female , Mice, Nude , Mice , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays , Apoptosis Regulatory Proteins/metabolism , Drug Resistance, Multiple/drug effects , Paclitaxel/pharmacology , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mice, Inbred BALB C , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/genetics
5.
Exp Cell Res ; 437(1): 113995, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38490621

ABSTRACT

PURPOSE: Oral Squamous Cell Carcinoma (OSCC) is the 6th most common cancer worldwide. It is generally aggressive and closely associated with chemoresistance and poor survival. There is accumulating evidence for the involvement of inhibitors of apoptosis proteins (IAPs), including IAP1 and XIAP, in mediating chemotherapy resistance in OSCC. Various strategies for targeting IAPs have been designed and tested in recent years and several small molecule IAP inhibitors are in clinical trials as monotherapies as well as in combination with radiotherapy and chemotherapy. The purpose of this study was to evaluate and compare the efficacy and biological activity of three IAP inhibitors both as stand-alone and sensitising agents to cisplatin in a preclinical model of squamous cell carcinoma of the tongue. METHODS: Cisplatin-sensitive SCC4 and -resistant SCC4cisR cells were utilised in this study. Apoptosis was evaluated by flow cytometric analysis of Annexin V/Propidium Iodide-stained cells. Expression of IAP proteins was determined by western blotting and knockdown of cIAP1, livin and XIAP was conducted by transfection of cells with siRNA. RESULTS: We establish for the first time the therapeutic efficacy of the Smac mimetic, BV6 and the XIAP inhibitor Embelin, for OSCC. Both of these IAP targeting agents synergistically enhanced cisplatin-mediated apoptotic cell death in resistant cells which was mediated in part by depletion of XIAP. In addition, knockdown of XIAP using siRNA enhanced cisplatin-mediated cell death, demonstrating the importance of targeting XIAP in this sensitisation. CONCLUSION: These findings provide pre-clinical evidence that IAP inhibition may be a valuable therapeutic option in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Cisplatin/pharmacology , Carcinoma, Squamous Cell/drug therapy , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , Cell Line, Tumor , Mouth Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Apoptosis/physiology , Carrier Proteins , RNA, Small Interfering
6.
Methods ; 224: 35-46, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373678

ABSTRACT

Bivalent Smac mimetics have been shown to possess binding affinity and pro-apoptotic activity similar to or more potent than that of native Smac, a protein dimer able to neutralize the anti-apoptotic activity of an inhibitor of caspase enzymes, XIAP, which endows cancer cells with resistance to anticancer drugs. We design five new bivalent Smac mimetics, which are formed by various linkers tethering two diazabicyclic cores being the IAP binding motifs. We built in silico models of the five mimetics by the TwistDock workflow and evaluated their conformational tendency, which suggests that compound 3, whose linker is n-hexylene, possess the highest binding potency among the five. After synthesis of these compounds, their ability in tumour cell growth inhibition and apoptosis induction displayed in experiments with SK-OV-3 and MDA-MB-231 cancer cell lines confirms our prediction. Among the five mimetics, compound 3 displays promising pro-apoptotic activity and deserves further optimization.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Conformation , Apoptosis , Cell Line, Tumor
7.
Aging (Albany NY) ; 16(4): 3674-3693, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364254

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) ranks as the eighth most prevalent malignancy globally and has the eighth greatest fatality rate when compared to all other forms of cancer. The inhibitor of apoptosis protein (IAP) family comprises a collection of apoptosis-negative modulators characterized by at least one single baculovirus IAP repeat (BIR) domain in its N-terminal region. While the involvement of the IAP family is associated with the initiation and progression of numerous tumours, its specific role in HNSCC remains poorly understood. Thus, this study aimed to comprehensively examine changes in gene expression, immunomodulatory effects, prognosis, and functional enrichment of HNSCC utilising bioinformatics analysis. Elevated levels of distinct IAP family members were observed to varying degrees in HNSCC, with high BIRC2 expression indicating a worse prognosis. Additionally, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to probe the enrichment of gene expression and biological processes related to the IAP family in HNSCC. The infiltration levels of immune cells were shown to be strongly associated with the IAP gene expression, as determined by subsequent analysis. Hence, BIRC2 could be an effective immunotherapy target for HNSCC. Collectively, novel knowledge of the biological roles and prognostic implications of IAP family members in HNSCC is presented in this study.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy , Prognosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Biomarkers, Tumor/genetics , Inhibitor of Apoptosis Proteins/genetics , Gene Expression Regulation, Neoplastic
8.
J Drug Target ; 32(3): 223-240, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38252514

ABSTRACT

Survivin holds significant importance as a member of the inhibitor of apoptosis protein (IAP) family due to its predominant expression in tumours rather than normal terminally differentiated adult tissues. The high expression level of survivin in tumours is closely linked to chemotherapy resistance, heightened tumour recurrence, and increased tumour aggressiveness and serves as a negative prognostic factor for cancer patients. Consequently, survivin has emerged as a promising therapeutic target for cancer treatment. In this review, we delve into the various biological characteristics of survivin in cancers and its pivotal role in maintaining immune system homeostasis. Additionally, we explore different therapeutic strategies aimed at targeting survivin.


Subject(s)
Neoplasms , Adult , Humans , Survivin/therapeutic use , Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/therapeutic use , Apoptosis , Microtubule-Associated Proteins/physiology , Microtubule-Associated Proteins/therapeutic use
9.
Nat Commun ; 15(1): 891, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291026

ABSTRACT

Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.


Subject(s)
Apoptosis , Inhibitor of Apoptosis Proteins , Apoptosis/genetics , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Caspases/metabolism , Autophagy/genetics , Ubiquitination , Mitochondrial Proteins/metabolism
10.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38296349

ABSTRACT

Cell death and proliferation are at a glance dichotomic events, but occasionally coupled. Caspases, traditionally known to execute apoptosis, play non-apoptotic roles, but their exact mechanism remains elusive. Here, using Drosophila intestinal stem cells (ISCs), we discovered that activation of caspases induces massive cell proliferation rather than cell death. We elucidate that a positive feedback circuit exists between caspases and JNK, which can simultaneously drive cell proliferation and cell death. In ISCs, signalling from JNK to caspases is defective, which skews the balance towards proliferation. Mechanistically, two-tiered regulation of the DIAP1 inhibitor rpr, through its transcription and its protein localization, exists. This work provides a conceptual framework that explains how caspases perform apoptotic and non-apoptotic functions in vivo and how ISCs accomplish their resistance to cell death.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Feedback , Inhibitor of Apoptosis Proteins/metabolism , Cell Death , Drosophila/metabolism , Caspases/metabolism , Cell Proliferation/genetics , Stem Cells/metabolism
11.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38066391

ABSTRACT

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Subject(s)
Leukemia, Myeloid, Acute , Membrane Transport Proteins , Naphthoquinones , Humans , Survivin/genetics , Survivin/metabolism , Apoptosis , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Decitabine/pharmacology , U937 Cells , Up-Regulation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Naphthoquinones/pharmacology , Cell Line, Tumor
13.
J Pharmacol Sci ; 154(1): 30-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081681

ABSTRACT

Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Interleukin-6 , Cell Line, Tumor , Apoptosis , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/pharmacology , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/pharmacology
14.
J Med Chem ; 66(24): 16515-16545, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38092421

ABSTRACT

Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.


Subject(s)
Inhibitor of Apoptosis Proteins , Neoplasms , Humans , Survivin/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Neoplasms/metabolism , Drug Discovery , Dimerization , Apoptosis
15.
J Med Chem ; 66(24): 16843-16868, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38079530

ABSTRACT

Survivin is a novel attractive target for cancer therapy; however, it is considered undruggable because it lacks enzymatic activities. Herein, we describe our efforts toward the discovery of a novel series of 4,11-dioxo-4,11-dihydro-1H-anthra[2,3-d]imidazol-3-ium derivatives as survivin inhibitors by targeting ILF3/NF110. Intensive structural modifications led us to identify a lead compound AQIM-I, which remarkably inhibited nonsmall cell lung cancer cells A549 with an IC50 value of 9 nM and solid tumor cell proliferation with more than 700-fold selectivity against human normal cells. Further biological studies revealed that compound AQIM-I significantly inhibited survivin expression and colony formation and induced ROS production, apoptosis, cell cycle arrest, DNA damage, and autophagy. Furthermore, the promoter-luciferase reporter assay showed that AQIM-I attenuated the survivin promoter activity enhanced by the overexpression of ILF3/NF110 in a concentration-dependent manner, and specific binding (KD = 163 nM) of AQIM-I to ILF3/NF110 was detected by surface plasmon resonance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Survivin/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Apoptosis , Inhibitor of Apoptosis Proteins , Cell Line, Tumor , Cell Proliferation , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/metabolism
16.
World J Surg Oncol ; 21(1): 381, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082268

ABSTRACT

BACKGROUND: Multidisciplinary therapy centered on antitumor drugs is indicated in patients with unresectable pancreatic neuroendocrine tumors (PanNET). However, the criteria for selection of optimal therapeutic agents is controversial. The aim of this study was to assess the malignancy of PanNET for optimal therapeutic drug selection. METHODS: Forty-seven patients with PanNET who underwent surgery were reviewed retrospectively, and immunohistochemical characteristics, including expression of GLUT1, SSTR2a, SSTR5, Survivin, X-chromosome-linked inhibitor of apoptosis protein (XIAP), and Caspase3 in the resected specimens, were investigated. Relapse-free survival (RFS) and overall survival (OS) were evaluated with regard to the characteristics using the Kaplan-Meier method and compared with the log-rank test. RESULTS: GLUT1 expression showed significant correlation with sex (p = 0.036) and mitotic rate (p = 0.048). Survivin and XIAP expression showed significant correlation with T-stage (p = 0.014 and 0.009), p-Stage (p = 0.028 and 0.045), and mitotic rate (p = 0.023 and 0.007). XIAP expression also significantly influenced OS (p = 0.044). CONCLUSIONS: Survivin and XIAP correlated with grade of malignancy, and expression of XIAP in particular was associated with a poor prognosis. Expression of these proteins may be a useful indicator to select optimal therapeutic agents in PanNET.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Survivin/metabolism , Survivin/therapeutic use , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/therapeutic use , Retrospective Studies , Glucose Transporter Type 1 , Prognosis , Neoplasm Recurrence, Local , X-Linked Inhibitor of Apoptosis Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/therapeutic use , Apoptosis , Pancreatic Neoplasms/pathology
17.
Life Sci ; 335: 122260, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37963509

ABSTRACT

Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.


Subject(s)
Neoplasms , Vaccines , Humans , Survivin , Inhibitor of Apoptosis Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Apoptosis , Vaccines/therapeutic use , Microtubule-Associated Proteins
18.
FASEB J ; 37(12): e23292, 2023 12.
Article in English | MEDLINE | ID: mdl-37971407

ABSTRACT

Immunotoxins (ITs) target cancer cells via antibody binding to surface antigens followed by internalization and toxin-mediated inhibition of protein synthesis. The fate of cells responding to IT treatment depends on the amount and stability of specific pro-apoptotic and pro-survival proteins. When treated with a pseudomonas exotoxin-based immunotoxin (HB21PE40), the triple-negative breast cancer (TNBC) cell line MDA-MB-468 displayed a notable resistance to toxin-mediated killing compared to the epidermoid carcinoma cell line, A431, despite succumbing to the same level of protein synthesis inhibition. In a combination screen of ~1912 clinically relevant and mechanistically annotated compounds, we identified several agents that greatly enhanced IT-mediated killing of MDA-MB-468 cells while exhibiting only a modest enhancement for A431 cells. Of interest, two Smac mimetics, birinapant and SM164, exhibited this kind of differential enhancement. To investigate the basis for this, we probed cells for the presence of inhibitor of apoptosis (IAP) proteins and monitored their stability after the addition of immunotoxin. We found that high levels of IAPs inhibited immunotoxin-mediated cell death. Further, TNFα levels were not relevant for the combination's efficacy. In tumor xenograft studies, combinations of immunotoxin and birinapant caused complete regressions in MDA-MB-468tumor-bearing mice but not in mice with A431 tumors. We propose that IAPs constitute a barrier to immunotoxin efficacy which can be overcome with combination treatments that include Smac mimetics.


Subject(s)
Immunotoxins , Neoplasms , Humans , Animals , Mice , Inhibitor of Apoptosis Proteins/metabolism , Immunotoxins/pharmacology , Cell Line, Tumor , Dipeptides/pharmacology , Apoptosis
19.
Cell Death Dis ; 14(11): 714, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919300

ABSTRACT

Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Mice , Animals , Adult , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Down-Regulation , Cell Proliferation , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism
20.
EMBO J ; 42(22): e113614, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37789765

ABSTRACT

Cellular inhibitor of apoptosis proteins (cIAPs) are RING-containing E3 ubiquitin ligases that ubiquitylate receptor-interacting protein kinase 1 (RIPK1) to regulate TNF signalling. Here, we established mice simultaneously expressing enzymatically inactive cIAP1/2 variants, bearing mutations in the RING domains of cIAP1/2 (cIAP1/2 mutant RING, cIAP1/2MutR ). cIap1/2MutR/MutR mice died during embryonic development due to RIPK1-mediated apoptosis. While expression of kinase-inactive RIPK1D138N rescued embryonic development, Ripk1D138N/D138N /cIap1/2MutR/MutR mice developed systemic inflammation and died postweaning. Cells expressing cIAP1/2MutR and RIPK1D138N were still susceptible to TNF-induced apoptosis and necroptosis, implying additional kinase-independent RIPK1 activities in regulating TNF signalling. Although further ablation of Ripk3 did not lead to any phenotypic improvement, Tnfr1 gene knock-out prevented early onset of systemic inflammation and premature mortality, indicating that cIAPs control TNFR1-mediated toxicity independent of RIPK1 and RIPK3. Beyond providing novel molecular insights into TNF-signalling, the mouse model established in this study can serve as a useful tool to further evaluate ongoing therapeutic protocols using inhibitors of TNF, cIAPs and RIPK1.


Subject(s)
Inhibitor of Apoptosis Proteins , Receptors, Tumor Necrosis Factor, Type I , Animals , Mice , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Cell Death , Apoptosis , Inflammation/genetics , Inflammation/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...